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1. Statement of a problem. The system of governing equations for the motion of
emulsion, offered by V. Pukhnachov and Q. Veinov in 1995 ({1]), involves the following
unknown functions: temperature of mixture T, volume concentration of the disperse
phase ¢, average velocities of drops in carrying phase, pressure of carrying phase. It
consists of mass conservation laws for disperse and carrying phases, momentum equa-
tion, energy equation and the equation of relative phase velocity. The described system
is very complicate due to its nonlinearity and high order. However, in the case of
one-dimensional motion with plane, cylindrical or spherical waves it can be radically
simplified. One-dimensional with plane waves motion of emulsion under the effect of
thermocapillary forces and microacceleration with the average volume velocity of mix-
ture equal to zero is described by the following mathematical model with two unknown
functions: temperature T and concentration of disperse phase
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We use indexes d and m to denote the parameters of the disperse and the mairix
respectively Let us introduce the following notations:
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 This work was supported by grants of INTAS N84-529 and Russian Foundation of Basic Resenrch
N99-01- 00529

142



where R is the radius of the drops, o is the surfase tension coefficient. Here p!, , p2, ,
Py Py Ay A%, AL, A3, kL ,k3, — are known positive constants. The constant
g is positive, if the acceleration of force of weight is directed to the side of greater
temperature and is negative otherwise.

The velocities and the pressure are restored from the additional equations after the
temperature and concentration are found.

We consider the process of solidification under the assumption that the solid matrix
is motionless. A jump of density at solidification is neglected. In the liquid matrix
with solidified drops the effect of thermocapillary forces is absent (L = 0), in solidified
matrix both the thermocapillary forces and the floating force are absent (L = Kg = 0).
The conditions on the line of discontinuity have the form:

€D =[C (Kg " LT,;) (1 -c)l, [m=o,

[UID = [(para — ,o,,,,)\m)C(l - c) (Kg +LT,)T) - [kn(1- MC)T.],  (12)

Here the symbol [.] denotes the difference of values of the function in front and behind
the jump, D is the velocity jump, U stands for the enthalpy.

ADDITIONAL ASSUMPTIONS. The supposition of smallness of the disperse substance
concentration gives a reason for linearization as the main method of research of the
problem in the work under study. Since the process of the thermal conduction in the
first approximation is determined by the parameters of the matrix, we assume that:

- the solidification front z = s,,(t) for the matrix is the Stefan boundary for the
temperature problem;

- the isotherm T = T¢, where T?-is the temperature of the disperse substance
solidification can be the line of discontinuity only for the concentration of the disperse
substance; let z = s4(¢) be the equation of this isotherm;

- the temperature gradient is greater than zero.

Let the temperature T™ of the matrix solidification be less than the temperature
T? of the disperse substance solidification. We denote as C*(z,t) the solid disperse
substance concentration in the solid matrix (the domain z < sn(t)); as C*}(z,t)-the
solid disperse concentration in the liquid matrix (the domain s, < z < s4); as C! -
the liquid disperse concentration in the liquid matrix (the domain z > s4(t) ). So the
linearized problem of determining the functions C*(z,t),C'(z,t),C*(z,t), will be the
following:
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‘{:td (Oal Ca) = C“Kg, o sm(t). (1.3)

The tempcrai:ura. T4z,t) and the free boundary . sm(t) are pre]zmma.ry found from
- the classic fwo-phase Stefan problem:
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& 2rs '
RO L 2 < smlt);
s _ ol pm ds or: ; ort _
T'=T'=T"  Zy=kng= —knp= ©=smlt) (1.4)

with some boundary and unitial conditions, for example,
T°(0,8) = f*(t) < T™, Tloo,t) =0, s(0)=so;
T*(2,0) = *(z) < T™, z € {(0,s(t));
THz,0) = ¢'(z) > T™, = € (s(t), 00); (1.5)

Let us suppose now that 7™ > T, In this case the concentration does not have the
jump on the line z = s4(t}. So the problems of finding the disperse concentration in
the solid matrix C*(z,t) and the disperse concentration in the liquid matrix C'(z,t)
consist of equations:

o ., af . or _
-§t-C‘ e '5; (C (L"‘é‘“ . Kg)) z > Sm(t)g (16)
LT < sm(t); (1.7)
at e My . | T . &m ¥ .
and condition
d3m i ] Wall an ’ "
s (o ~C ) =C (Lmaz +Kg), o=l (1.8)

Functions Tz, t) and sm{t) are the solution of the classic Stefan problem, mentioned
above.

For the described systems we consider two probiems the problem of the concen-
tration distribution determination in the solid part under given initial distribution of -
concentration in liquid , which we name “direct” and the problem of initial concentra.
tion distribution determination in liquid under given distribution of the concentration
~ in the solid part which we name “inverse”. The latter is the mathematical model for
the problem of obtaining the composite with the given disperse phase distribution when
the difference in densities is essential, that is impossible in the case of earth gravitation
due to the floating effect. We will search for a classical solution of delivered problems
with nonnegative, bounded functions C*,C*,C*.
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2. Conditions of admixure displaement by moving front of solidification. We
will be interested in the process “of directed solidification”, i.e. solution of problem (1.4)
- (1.5), satisfying the inequality $,,(t) > 0. This requirement can be easily provided in
terms of the Stefan problem input data ([2]).

Let us consider the relation of the disperse phase concentration on different sides of
solidification boundary in the case T™ > T¢. Taking into account the condition of a
gap for concentration (1.8), we conclude, that the necessary condition for solvability of
direct and inverse problems has the form

ds,, aT! '
B : X
s T . (s,,.,(t),t) +Kg, t>0 (2.1)

It provides the “right” slope of the characteristics and nonnegative sign of the con-
centrations on the solidification boundary. Inequality (2.1) means, that the disperse
transport velocity in liquid phase, caused by thermocapillary effect and microgravita-
tion, not greater than the velocity of the solidification. Under this condition in the
case LT!(s..(t),t) + Kg > 0 (Fig. 1,a) we have C*(z) < C'(z,s;}(z)). In the case
LT!(sm(t),t) + Kg < 0 (Fig. 1,b) we obtain C*(z) > C!(z,s;;}(z)). In the case of
realization of the identical equality $,,(t) = LT} (sn(t),t)+ Kg, the direct problem can
have only trivial solution, the inverse one has no sense.

O x0) PO x(0) X

Fig 12 Fig 1b

Note, that the conditions of the “right” slope for characteristics of two- front problem
(1.3) are as follows:

ds,, d'sd 1 de
— — RS s | — — > 0.
- Kg, (dt LT, (sq(t),t) Kg) (dt Kg) >0

3. On resolvability of the problems. In this section we formulate the sufficient
conditions for existence of the bounded and nonnegative solution for the direct and
inverse problems at any time interval ([4]).

PROPOSITION 3.1. Let inequality

d "t m‘l d‘sﬂl
—A=E(t) S Lo—(sm(®),t) + Kg < a=22(1) (3.1)

ts fulfilled for all significance of time t and for some constants A and a, such, that
A>0, 0<a<1. Besides that, let ezists nonnegative constant N , such, that for all
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significanse of t, unequality .
- _
| f O (1)) + K9) I (o (6(1 — a) + sm(r)as )| < N

is fulfilled.
Then the solution C?*(z) of problem (1.5)~{1.8) with the initial condition
CHz,0) = Ci{z) > 0, z > sum(0) is nonnegative and bounded by the value

max Cf(z) exp{Lk;}((¢'(2) — T™)pi A H1 + A4).

PROPOSITION 3.2. Let condition (3.1) fulfilled. Then the solutionof problem (1.5}~
(1.8) with the condition C*(z,s;;}(z)) = C§{z) is nonnegative and bounded by
max Cg(z) exp{Lk;Npj, X, }/(1 ~ a).

Note, that, the qualitative picture of the behavior of the solution for the problem
(1.6) - (1.8) is rather well represented by the cases, when the functions 7% and T are
“travelling wave” or self-similar (g == 0) solutions of appropriate Stefan problem.

4. Some special solutions. The exact solutions for problem (1.4}, (1.6)-{1.8) with the
special conditions of solidification (traveling wave with the solidification front equation
s(t) = Vt, and self-similar with s(t) = 8%, g = 0 ) are obtained and studied in [4].
Fig.2 shows the graph of the exact solution for the disperse phase concentration of
the emulsion Al-Pb with traveling wave type of solidification in the moment ¢ = 2¢.
with the initial concentration C = 0.006 uader the conditions: a - displacement of the
admixture to the liquid, b - accumulation of the admixture by the solidified part.
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The exact solution for two-front problem is alse obtained ([4]). It should be noticed
that the presence of the second line of the concentration discontinuity and the interme-
diate layer, representing the liquid matrix with solid inclusions, does not render essential
influence to the qualitative picture of the solution bchavxor in the liquid emulsion and
in the completely solidified part.

5. Spherical symmetry problem of solidification of emulsion. In the case of
the spherical symmetry (solidification of the sphere with unit radius, g = {}) equations
(1.6)-(1.8) are replaced by

{
—Qc‘ ! i(zzc‘zﬁ-) = 0, z < 8m(t);

ot z* Oz Oz
- gzcs = 9, 3m.(t) << 11

dsm I s art _
- (c -C ) ¢ (La— +Kg) z = su(t).

Temperature T'(z,t) and free boundary sm,(t) are preliminary found by solving the
spherical symmetry two-phase Stefan problem. Note, that in this case 5,(t) < 0.
This requirement can be easily provided in terms of initial and boundary conditions for
Stefan problem.

The condition of the “right” slope of the cha.ractensi‘.lcs and nonnegative s&gn of the
concentrations on the solidification boundary takes the form

$unlt) € LT sm(t),1).
Note, that in the adsence of gravitation the concentration of disperse on the front from

the liguid part is always greater than from the solid.
The problem accepts the exact solution

sty =8V —t, Tz, t) = b(t* —t g—i),

a
z
' vi*t—1
T*(z,t) = b(t o g;) - %i-y czp( ;fj) / G”P(zié(@s)) 2,

)

where b is an arbitrary positive constant, a;,a, are the thermal con&uct:wf:y of liquid
and solid; 8 = \/ﬁ, t* == 1/6a; is the time of full sohdzﬁcatzon of the sphere;

Cl(ant) = _exp(bLt/a;) Ci(= .ezp(bLz/sa;)), ¢! = C¥(z,0).

oL ZbLt
9a3 )

C*(y(t),t) = Clezp(bLt/ar) - (z A
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Fig.3 demonstrates the distribution of the concentration in the solidified part, dotted line
represents the exact solution, continuos line represents the numerical solution under the
input data from the exact solution, given above. The error is about 0.01. Redistribution
of the disperse can be estimated as 10% of initial concentration.

Co —|-

Fig 3

Calculation were conducted under different initial and boundary regimes for Stefan
problem and showed that the degree of redistribution increased together with the in-
creasing of the sphere surface cooling velocity.

The corresponding problem can be easily formulated and the exact solution found for
the case of one dimensional motion with cylindrical waves.

6. Numerical study. The numerical research of linearized problem consists of the
consecutive solving the Stefan problem and transport equation. For the solution of the
two-phase Stefan problem the Riccati transformation is used, that allows to calculate the
free boundary without additional iterations. Moreover it permits to solve the modified
Stefan problem with surface tension and supercooling conditions on the solidification
front. This method was offered by Gunter Meyer ([3]). In the heat equation the time
derivative is replaced with backward finite difference and the temperature for time step
number n is found in the form

T"(z) = R(z)%ﬁ + W(z)
. = RET*(=) + W) (6.1)

for the boundary conditions of the first and the second order correspondingly. Functions
R(z), W(z) are found as the solutions of the boundary problems for the Riccati and
linear equations correspondingly. The free boundary position for the time step = is
found from the algebraic equation obtained from the Stefan condition, where the time
derivative is replaced with backward finite difference and the temperature gradients are
taken from (6.1). The temperature is restored from the solving the ordinary differential
equation with given condition on the free boundary, which position was found before.
For the numerical study of the direct problem the implicit scheme with the directed
differences is used. Space and time steps were chosen such, that the inequalities

oT Az  ds
IL‘é-;-i-KgI( E<|E
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would be fullfiled. In dependence on the signs of the expression LT: + Kg the value
of the liquid phase concentration C! for the time step n and the space step i is
determined from equation

03 n Ot tn % : ii 7
o= - E{(L“ﬁﬁ""lfg) e (L"é;"“‘g)".*}

if the expression is negative, or from equation

Ot T Ty '
Ccrtl = Cp KQ{ (L—é?;m + Kg)c‘f‘ - (LW@Z’*}* + Kg) :»1}

if the expression is positive. Fixed mesh with uniform time and space steps was used
for calculations. The values on the free boundary in the case of difference in the free
boundary position and the mesh points are calculated by using the Newton interpolation
polynomial of the 4-th order. The boundary value problems for the first order ordinary
equations are solved with the Runge-Kuft method of the 4-th order.

The calculations were carried out on the example of the mixture aluminum - lead. As
the test for one-dimensional problem the exact solution of the emulsion solidification
with temperature mode such as a traveling wave was used. The calculations were carried
out for the different values of Kg. Fig.4a shows the profiles of concentration for Kg = 0,
Fig.4b — for Kg= —0.003.
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